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Differential geometry of the coincidence 
site lattice* 

M. J. M A R C I N K O W S K I  
Engineering Materials Group, and Department of Mechanical Engineering, University of 
Maryland, College Park, Maryland 20742, USA 

The tensor properties of simple internal surfaces, such as two-phase interfaces and grain 
boundaries, have been studied in detail. In particular, these tensor quantities have been 
defined with respect to the original crystal lattice as well as to a common coincidence site 
lattice that is a characteristic of the boundary. Such lattices allow a given type of 
distortion to be represented in either a Riemannian or a non-Riemannian (dislocated) 
space. This particular generality provides a powerful method of anlysing problems in 
continuum mechanics. 

1. Introduction 
The coincidence site lattice description of  a grain 
boundary [1] and a two-phase interface [21 has 
already been formulated in relatively simple terms. 
Since many of the concepts developed therein 
appear to be quite fundamental with respect to a 
more generalized theory of dislocations, it was felt 
that a reformulation of these concepts in terms of 
the language of differential geometry would provide 
the required theoretical framework. 

2. Distortions associated with a two-phase 
interface 

Consider two simple cubic crystals of differing 
lattice constant ao and be belonging to phases A 
and B respectively. If  they are joined together so 
that the crystallographic planes are continuous 
across the interface, the configuration shown 
in Fig. 1 is obtained. Such a boundary is fully 
coherent and may be visualized in terms of a 
vertical array of  virtual edge dislocations shown by 
the dotted symbols, each of strength ao - be as 
first described by Marcinkowski [3]. As we shall 
shortly see, such a description is not strictly correct 
geometrically, since no extra half planes are 
present. In fact, the distortion is actually elastic 
and will be designated by lower case Greek letters, 
i.e., g, 3., etc. 

The fully coherent boundary of Fig. 1 can now 
be made completely non-coherent by the intro- 
duction of an extra half plane, i.e., edge dislocation, 
every five interatomic spacings, measured in terms 
of phase B, as shown in Fig. 2. These are repre- 
sented by the solid dislocation symbols and are 
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Figure 1 Fully coherent interphase boundary. 
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Figure 3 Coincidence site sublattice associated with the 
interface boundary of Fig. 2. 

seen to completely compensate the virtual 
dislocations associated with the fully coherent 
boundary. We shall represent the completely 
compensated state in Fig. 2 by lower case Roman 
letters, i.e., k, 1, etc. 

Inspection of Fig. 2 shows that the interphase 
boundary contains a number of  coincidence sites 
which are shown as open circles. These sites 
generate a coincidence site lattice of edge dimen- 
sions aoe which is common to both phases and in 
terms of this description may be labelled as state 
(k 1). The coincidence site lattice unit cells can in 
turn be subdivided into a still smaller sublattice of 
unit cell edge length aocs, as outlined by the 
206 

Figure 4 Description of Fig. 1 in terms of the coincidence 
site lattice sublattice. 

dashed lines of Fig. 3. This particular designation 
will be denoted as state (k2). It is apparent from 
this figure that aoe s is simply equal to a0 - bo 
and provides still more physical insight into the 
coherent boundary of Fig. 1. In particular, when 
the (~) state is redrawn in terms of the coincidence 
site lattice sublattice, the configuration denoted as 
state (t~ 1) in Fig. 4 is obtained. In particular, it is 
seen to consist of  an array of extra half planes 
(shown shaded) of  strength aocs spaced every five 
coincidence site lattice sublattice unit cell distances. 
This, in fact, is the correct dislocation model of  
the coherent dislocation model of the coherent 
boundary of Fig. 1 and is the true origin of  the 
dotted dislocations which were originally termed 
virtual dislocations. We see, however, that in terms 
of Fig. 4, the dislocations are, in fact, real ones, so 
that strictly speaking the (~) state is an un- 
dislocated state. 

The various states (tO, (k), (k 1 ), (k 2), and (K 1 ), 
as well as (K), (k3), (k4), and (K 1) which will be 
considered later, can all be connected to one 
another. For example, the transitions (K)-+ (k), 
( K ) - + ( k l ) ,  (K)-+(k2) ,  ( k ) ~ ( k l ) ,  ( k ) ~ ( k 2 ) ,  
( k l ) -+ (k2 ) ,  (K)-+(K1), and (K) -+ (K  1) corre- 
spond simply to coordinate transformations or 
reference frame changes. On the other hand, the 
transformations (U) -+ (K), (k 2) -+ (K1), (~) ~ (k), 



(K) -+ (k 3 ), (~) -+ (k3), (K 1 ) _+ (k 4 ), and (k) -+ (k 3) 

correspond to distortions or changes in state. 
According to Schouten's notation, [4] only 
reference frames are enclosed in parentheses; 
however, this should not lead to any difficulties in 
the subsequent analysis, when the above corre- 
spondences are kept in mind. The various trans- 
formation tensors can now be used to write 

dX k : C k a x  E (la) 

ctx '~' = C~' clx '~ ( lb)  

etc., and 

e k = C K e K (2a)  

e K, = C~, % (2b) 

etc., where eK, etc., are base vectors, while dx K, 
etc., are components associated with the vectors. 
The C k and their inverses C K are related accord- 
ing to 

c~ c~ = ~ (3) 

where 8 k is the Kronecker delta. 
In the case of the distortions, we shall first 

consider those that are elastic in nature, i.e., 
(K) -~ (K). The corresponding distortion tensor can 
be written as BE from which [5] 

e~ = B~ e~.  (4) 

A perfect lattice, such as shown in Fig. 5, will be 
chosen as a reference state and denoted by upper 
case Latin letters, i.e., K, L, etc. The distortion in 
Fig. 1 can be written as follows 

B~ : B~ B~ B ~ =  B~ (5) 

\Bj n~ g~/ 0 

where 

B2 ~ -  f l  @- V A  

and where fll and f2 are defined as 

f ,  = [exp (ax 1) + 11 -1 

and 

(6) 

(7) 

f2 : [exp ( - - a x ' )  + 11 - '  (7b) 

where the coordinate x 1 is measured with respect 
K 

to the local coordinate system at the potential 
boundary shown dotted in Fig. 5. Thus, for 

I 

I 
'-leo I- 

�9 I 

�9 4 5 

: 

�9 I 2 

2 

] I 

e 

I 

(K) STATE 

Figure 5 Perfect lattice reference state�9 

X 1 ~ - - c %  f2 = 0 and B~ = f l  = 1, while for 
K 

x 1 - + + %  f l  = 0 and B 2 = f2 = V. Right at 
the boundary, where x 1 = 0, B 2 = (1 + V)/2. 

K 

Fig. 1 was drawn with V = 4/5, i.e., bo = 4/5 ao. 
The component 'B]  in Equation 5 is some suitable 
function which gives the vertical displacement of  
the horizontal planes in Fig. 1. In particular, it can 
be written as 

B12 = x 2 a l B  2. (g) 

Thus, the function given by Equation 6 seems to 
be an appropriate one, where the parameter a can 
be chosen so as to adjust the width of  the dis- 
torted zone across the boundary. Also "tacitly 
assumed in Equation 6 is that bo is attained 
by an elastic distortion V of  ao. Thus, Equation 6 
can be written out in full as 

B~ = [1 + Vexp(axl)]/[1 + e x p ( a x ' ) ]  (9) 
K 

while the inverse quantity B~: can be simply found 
from the following relation: 

B~ B~ = 8~,. (10) 

For shnplicity, bothB~ andB~ were chosen equal 
to 1 in Equation 5. In any event, we can now use 
Equation 10 to write for ~2 

/ ~  = [1 + exp (ax t ) ] / [1  + Vexp (ax ' ) ]  (11) 
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Figure 6 States generated from th e (K) state of Fig. 5. 

where the bar over B denotes that the terms are of 
the form BI}, i.e., the inverse distortions. 

In order to properly represent the distortion 
(K) ~ (K), it is important to note that we must not 
write 

dx ~ = B~: dx K (i2a) 

but instead 

dx ~ : 6~ dx K. (12b) 

Under the conditions imposed by Equation 12b, 
the coordinates retain their same numerical values 
in both states, i.e., they are dragged along by the 
transformation [4]. As will also be shown in the 
following section, this formulation is also com- 
patible with the proper definition of strain. 

Let us now consider the distortion given by 
(k 2) -+ (K 1 ) which involves dislocations. The k z 
state is shown in Fig. 6b. In this case, we can 
write the distortion as A~':, which gives 

K 1 dx K' = Ak: dx k~ (13) 

and where 

A ~  = ~t1~ H(--x~)}a + {A~ H(+x~)}2 (14) 

while 
208 

= 5k2 (15a) 

and 

A ~  = . (15b) 

0 

The quantities H ( -  xl)  and H(+ xl)  are Heaviside 

functions defined by 

01 i fx  I > 0 H(- I ) : (16a) 
i fx  1 < 0 

k 2 

and 

{ 01 i fx  ~ < 0  
H(+ xl) = (16b) 

k ~ i fx  1 > 0 
k 2 

where x a is measured from the boundary. It is 
k 2 

important to note from Equation 13 that the 
coordinates are not dragged when the strain is 
expressed in terms of dislocations. The curly 
bracket notation is used in Equation 14 to 
emphasize the fact that each phase may be treated 
separately. 

For the coordinate transformation (K )~  (k), 
C~: and Cg given by Equations la and 2a respect- 
ively become 

c k : {c k H(-x')}, + {C k (17a) 

and 

Ck K : {Ck KH(-Kx')} , + {Ck KH(+xl )}2  (17b) 

where 

@ = 6i~ (18a) 

C~: = 5~ (18b) 
1 

 l~ = l\ o~ 1/Vo 0Sc) 

Ck ~ -= C~ 1 . (18d) 

It is also interesting to note that the (K)-+ (k) 
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Figure 7 Configuration generated by tearing of the (~) 
state of Fig. 1. 

coordinate transformation could also be written 
as the two-step distortion (K) ~ (K) -* (k), so that 

= (19)  

where 

A~ - C k.  (20) 

The coordinate transformation (K)-~ (K 1) is also 
of interest and may be written as 

a N  K1 = C/~ 1 d x  K (21) 

where 

CK ~- ht 

and where 

H(- -x l )} ,  + {C~' H(+x ' ) }2  (22) 

(23a) 

(23b) 

(23c) 

C22 = 5  
1 

~ = 4  
2 

Thus far we have denoted coordinate transform- 
ations by C, elastic distortions by B, i.e., (K) ~ (K), 
and distortions involving dislocations, i.e., (k 2) 
(K 1) and (K) -+ (k) by A. Let us now consider the 
process of tearing which removes all of the elastic 
distortions associated with the (K) state configur- 
ation of Fig. 1. The resultant state is shown in 
Fig. 7 and will be denoted as (k3). It is apparent 

that such tearing requires the formation of new 
surfaces, all of which are denoted by dotted lines 
in Fig. 7. The (k 3) state could also have been 
generated from the (K) state by means of the 
following distortion tensors 

D~3 = {D~Ca H( - -x l )} l  + {D~  H ( + x ' ) } 2  (24a) 

and the inverse 

k a DK = {Dlk  H(--x  1)}1 + {D H ( + x  1)}2 

(24b) 

where 
D1 k a  k 3 = ~K (25a) 

D E  = 6kK~ (25b) 
1 

r -- (25C) 

as given by Equation 15b, while 

D k3 - C~ (25d) 

as given by Equation 18c. It is apparent that 
Equations 24a and 24b represent the limiting 
cases of Equations 6 and 11 respectively as a in the 
latter expressions approaches oo Important to 
note, however, is that the component D12 = 0. 
Similar to Fig. 7, the dislocated (• 1 ) state of Fig. 4 
can be torn to generate t h e  (k 4) state shown in 
Fig. 8. All of the tearing distortions, i.e., (K)-+ 
(k3), (K) -+ (k3), (K 1 ) -~ (k4), and (k) -~ (k 3) will 
be noted by D. Similar to the case of  Equation 12, 
the coordinates associated with the (K)-+(k 3) 
distortion can be dragged by writing for Equation 

25d, DK k3 = 8 k~ . However, as we shall see later, 

the dragging concept cannot be applied right at 
the boundary, and we must use Equations 24 
there. On the other hand, within the individual 
grains or phases, the dragging concept can be 
utilized, and under these conditions the (K) -+ (k) 
coordinate transformation can be written as a pair 
of sequential distortions (K)-+ (k 3) ~ (k) as 
follows 

k ~ k (26) C k = D K Ak3 

where 

Ak3 -- C k (27) 

as given by Equation 17a. We thus see that coordi- 
nate transformations and distortions, whether they 
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12b, becomes 

eKx = �89 (b~7,--aKx). (30) 

Consider next the strain tensor associated with the 
(K) -+ (k) coordinate transformation given by 

eKr~ = �89 (cka C~ C~ --aKL) (31) 

where cm is the metric tensor belonging to state 
(k). In particular 

Ckl = ek'el  = C~ C1K. (32) 

It follows from Equations 31, 32, and 17 that 
eKr~ = 0, as is to be expected for a coordinate 
transformation, since such transformations involve 
no distortions. 

In distortions such as (k2)-+(K1), where 
dislocations are involved, Equation 28a can be 
rewritten as 

Figure 8 Configuration generated by tearing of the dislo- where 
cated (K ~ ) state crystal in Fig. 4. 

K: ~-: ekq, = 1 (aK'x' Ak '  Ae  --ak~?) (33) 

3. Metric and strain tensors associated with 
a two-phase interface 

We are now in a position to formulate expressions 
for the strain tensors associated with the distor- 
tions discussed in the previous section. In particu- 
lar, for the elastic (K) -+ (K) distortion [6] 

eKL = �89 (bKx BI~ BL x - -aKL) (28a) 

e~x = �89 (bKx --aKL B K B~).  (28b) 

The strain eKL is given in terms of  (K) state coor- 
dinates, while e~ x is in terms of (K) state coordi- 
nates. The quantities bKx and aKL are the metric 
tensors belonging with the (K) and (K) states 

while 

respectively. In particular, 

aKL = 6KL (29a) 

K K bKx = % ' %  = B~ B x 

= B~ B~ [B~ ] 2 (29b) 

0 0 1 . 

Since the coordinates associated with (K) ~ (K) are 
dragged, then Equation 28, according to Equation 
210 

be caused by elasticity, dislocations or tearing, are 
very closely related to one another. 

aK'x, = akq2. (34) 

Thus, where dislocations are involved, the strain is 
described by a dragging of  the metric, i.e., its 
values are kept numerically the same in states (k 2) 
and (•1). Note also that Equation 33 is a measure 
of the dislocation-induced strain which we may 
also denote as plastic strain. It does not account 
for the elastic distortions generated by the dislo- 
cations, i.e., we may say that the coordinates are 
dragged with respect to these elastic strains. 
Equation 33 is thus the true meaning of  dislo- 
cation induced or plastic strain. However, when we 
write the first term in this equation as 

dk212 = a ~ : : X l  A~2 AI2 (35) 

then Equation 33 can be rewritten as 

ekq~ = 1 (dk212 --ak21~) (36) 

which is in the same form as that given in 
Equation 30 for the elastic strain. This, in fact, is 
the fundamental reason why plastic strain can be 
written in the same way as elastic strain [7]. In 
fact, if the reference state metric in Equation 33 
were taken as ak21~ = 6k212 , then the plastic 
strain given by Equation 33 would be identical to 
the elastic strain given by Equation 30. This is a 
profound result since it implies that any given 
state of  distortion can be described either in terms 
of  classical elasticity, i.e., Riemannian geometry, 
or in terms of  dislocation, i.e., non-Riemannian 



geometry. This is also the fundamental reason 
why any given elastic distortion can be described 
in terms of  some suitable continuous distribution 
of  dislocations [8, 9].  

In the case of  the tearing process (K)-+ (k3), 

the strain tensor can be written as 

ek31a = �89 --ak31a ) ( 3 7 )  

where fk3p is the metric tensor associated with the 
(k 3) state and may be written 

fkq  3 ~ cva (38) 

as given bY Equation 32. 

4. Burgers circuit, torsion tensor and 
anholonomic object associated with a 
two-phase interface 

A Burgers circuit can now be associated with the 
fully coherent boundary of  Fig. 1 with a Burgers 
vector or closure failure b ~ given by the following 
line integral [10, 11] 

b = - f dx K. (39) 

It is important to note that the above integration 
path must be taken with respect to the initial or 
perfect state of the crystal. Such a circuit is shown 
by the path 1 - 2 - 3 - 4 - 5 - 6 - 1  in Fig. 5. More 
specifically, Equation 39 can be written as 

b 2 = - - B ?  A x  1 - - B  2 A N  2 - - B  2 A N  1 
g 6-2 2-3 3-5 

a x  2 = 0 ( 4 0 )  
5-6 

and follows from Equatio n 12b. The quantities 
2xx 1 , etc., in the above equation are simply the 

6-2 

distances from 6 to 2, etc., in Fig. 5. In the case 
of  the dislocated (k) and torn (k 3) states, we 
can write, similar to Equation 39 

and 

b k = - -  ~ CK k dx K ( 4 1 a )  

k3 d x  K . (41b) b k3 ~ - -  ~ D K  

In view of  Equation 17a, Equation 41a becomes 

b 2 = -- C2 z 2~x 2 --C~ 2xx 2 (42a) 
k 2-3 5-6 

or upon expanding 

b 2 = {4},--{4(1/V)}2 = ( 4 / V ) ( V - - 1 )  = --1.  
k 

(42b) 

This corresponds to the dotted closure failure 
3 ' - 2 '  in Fig. 2 associated with the extra half- 
plane included within the Burgers circuit. In view 
of  Equation 24b, Equation 41b gives 

b 2 - b 2 (43) 
k 3 k 

In terms of  Fig. 7, this closure failure is given as 
the dotted vector 3 ' - 2 ' ,  and corresponds to the 
width of  the gap generated by the tearing process. 
Alternately, this gap may be viewed as the result- 
ant of  the total amount of  new free surface 
created by the tearing process, i.e., the vectors 
3 ' - 4 ' ,  4 ' - 1 ' ,  and 1 ' - 2 ' .  The free surface lengths 
4 ' - 3 '  and 2 ' - 1 '  can be thought of  as cancelling 
with one another. 

For the (K 1) state configuration of  Fig. 4, we 
may write 

b K' = -- ~ A{~ dx k2 . (44) 

In view of  Equation 14, the last expression can be 
expanded to give 

b 2 = --A~dxx 2 - A z  a 2xx 2 = 4. (45) 
~ 2--3 5-6 

This closure failure corresponds to the four shaded 
half planes within the Burgers circuit of Fig. 4. 
The (k 4) state of  Fig. 8 can in turn be generated 
by a tearing of  the (K 1) state to give 

where 

k 4 b k4 = -- y D ~ '  dx K' (46) 

k 4 DK' = CK k (47) 

as given by Equation 17a. Expansion of  Equation 
46 yields 

b z = --D~ A x  I - -D~ A x  z 
k 4 6-2 2-3 

- -D  ? AX 1 - - D  2 AX 2 (48a) 
3-5 5-6 

or still more simply in terms of  Fig. 4 

b 2 = 0 - - ( 5 / 4 )  1 6 - - 0 - - ( - - 1 6 - - 4 )  
k 4 

= -- 4 + 4. (48b) 

The last equation simply states that the closure 
failures associated with the four dislocations in 
Fig. 8 are just balanced by the four closure failures 
associated with the gaps generated by the tearing 
process. 

The line integral given by Equation 41a can 
now be converted into a surface integral by means 

211 



of Stokes' theorem [12] to obtain an alternate 
representation of b k given by 

bk = --fs OIL CKk] dFLK 

= --fs -�89 [0L Ck -- oK Ck] dFLK (49) 

where 0 L denotes the operation O/Ox L. For the 
specific component b 2, Equation 49 can be 

k 
written as 

k b= = - f ~  0, c~ dF '= (50a) 

which from Equation 17a gives 

b 2 = 1)dx l  k ~ 8 ( I ~  d x 2  1 

(50b) 

where the following relations have been utilized 

0 1 H ( _ _ X  1 ) = __~(~1) (51a) 

and 

0 1 H ( + x ' )  = + ~ ( ~ ' )  (51b) 

where ~i(X 1) is the Dirac delta function, which is 

zero for x I ~ 0. This function also satisfies the 
K 

following relation 

f + / ~ ( x l ) d x  1 = 1 ( 5 2 )  

so that for the specific Burgers circuit of Fig. 5, 
Equation 50b gives 

b 2 = {4}1 -- {4 ( l /V)}  2 (53) 
k 

which is identical to that given by Equation 42b. 
The surface integral of  Equation 49 can be 

rewritten in a second form as 

b k  ~ - -  f s  �89 Cm ~ Cy [0,, C~ -- 0~ C~] dF ~ 

(54a) 

or more compactly as 

b k = - - f sSmikdF ml 

212 

(54b) 

where the quantity Srlai k is termed the torsion 
tensor, and can be Written as [5] 

Smi k : �89 C~m Ct ~ [OL CI~ --O~: C~I. (55) 

As first pointed out by Kondo [13],  Srhi k is a 
measure of the dislocation content of a crystal. In 
particular, we may write for the specific com- 
ponent 

si~ ~ = ~ c~' c~ 0, c~ 
k 

= (_�89 , + { 1 6 ( x , ) } 2 .  (56) 

When this component is substituted into Equation 
54b, we again obtain the same result as that given 
by Equation 53. 

For the torn (k a) state crystal, Equation 41b 
can be converted to a surface integral to give 

b ka __=__fs lnLanKra  n k  a g-u m L'la [OLZa K --0K Dka ]dE map 

(57a) 
or more compactly as 

fs "~k' a rm3?  (57b) b ka = ~/.mal3 u~, 

k a where gZmq~ is termed the anholonomic object 
and may be written as [4, 14] 

k 3 1 n L  r~K k 3 k a 
~'~m313 = - - ~ / j m  3/~la [ ~ L D K  - -  0 K D  L ] .  

(58) 

It is apparent that 

Si~ z = - - ~ 2  (59) 
k k 

from which it follows that 

b 2 = b 2. (60) 
k 3 k 

Continuing with these arguments, the line integral 
of  Equation 44 can be rewritten as 

bK' = -- fs Su~"K'dF"~Xl (61a) 

where 
gl 1 A12 ,~k 2 K1 gl 

S ~ , ,  = ~.~ul~x~ [01~Ak2 --0k2AI~ ] 

(61b) 

or for the specific component 

Sii  2 - S i � 8 9  2 (62) 
gl k 

which, when substituted into Equation 61a, gives 
b 2 = 4, i.e., the same value as that obtained from g 1 



tire line integral method which led to Equation 45. 
Finally, for the torn and dislocated (k 4) state, 

Equation 46 can be rewritten as 

f s  k 4 �9 4 bk4 = -  [Srh4i 4 - - ~ Z ~ 4 1 ' ] d  Fm414 (63) 

where, similar to the results of Equation 48b, 
b z = 0. This arises since k4 

S i r  = ~ ; .  (64) 
k 4 k ~ 

The above is an important relation and is, in fact, 
the basis of the naturalization process [13]. 
Verbally, it states that the gaps or free surfaces 
generated by the tearing process, and which are 
measured by f2~2, just balance the extra half 
planes due to the dislocations, and which are 
measured by Si~ 2. It is, in fact, the equality of  
Equation 64 which has enabled Zorawski [14] 
to base his theory of  dislocations almost exclus- 
ively on the anholonomic object, rather than 
the torsion tensor. 

It is apparent from the concept of dragged 
cordinates that S~X K = f2~x = 0. This same result 
can also be shown to hold when non-dragged 
coordinates are employed, i.e., B K as given by 
Equation 5, as well as its inverse are used. The 
component  of interest becomes 

~-~22 = 1~1/~22.1.2 [ 3 1 B 2 - 0 2  B2] (65) 
K 

which, according to Equation 8, is zero. Note that 
in the limiting case of the (K) state when a in 
Equation 11 goes to oo so as to generate the (k 3) 
state 

~'~2 2 1/~ l n 2  :a n 2  (66) 
~ u 1  z . ,  2 t J l ~  2 . k 3 

This is an important result since it distinguishes 
the torn (k 3) state from the elastically distorted 
(K) state. 

In concluding this section, we have arrived at 
the very important result that the coincidence site 
lattice provides the reference coordinate system by 
which a dislocated state may be eliminated, i.e., 
the coordinate transformation (k) -+(k2) ;  or by 
which an elastically distorted state may be rep- 
resented by dislocations, i.e., the coordinate 
transformation (K) -~ (K t). These results will next 
be extended in the following sections to include 
the still more complex case of  grain boundaries. 

5. Distortions associated with a symmetric 
tilt boundary 

Let us now consider the (K 2) state reference 
crystal shown in Fig. 9a. Such a crystal can be 
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Figure 9 Uni fo rm bending:  (a) Initial state,  (b) Final  state. 

uniformly bent to generate the (Kz) state illus- 
trated in Fig. 9b. In order to eliminate the elastic 
strains associated with the bent crystal, it may be 
torn as illustrated in Fig. 10a to generate the (k s) 
state. The tearing is seen to create a pair of  free 
surfaces 4 ' - 1  and 1 - 4 ' .  I f  now extra matter  is 
added to the torn state so as to create the sym- 
metric tilt boundary shown in Fig. 10b, a dislo- 
cated (k 6) state is obtained. The (K2), (t<2), (kS), 
and (k 6) states may be viewed as the counterparts 
of  the (K), (t0, (kB), and (k) states respectively 
associated with the two-phase interface. The open 
circles within the grain boundary of Fig. 10b 
correspond to coincidence sites and are seen to 
generate a coincidence site lattice common to both 
grains and which is denoted by dotted lines [1]. 
For greater clarity, this coincidence site lattice is 
again reproduced in Fig. 11. It has a unit cell edge 
length aoe and will be designated as the ( k ' )  state 
representation of the grain boundary. The 
coincidence site lattice can be further subdivided 
into a smaller sublattice of  dimensions aoes, and 
will be designated as the (k 8) state representation 
of the grain boundary. It is also convenient to 
define yet another lattice of edge length aoB 
which wilt be designated as state (kg). The corres- 
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Figure 10 (a) Configuration generated by tearing of the 
bent state shown in Fig. 9b. (b) Symmetric tilt boundary 
of misorientation 0 = 53.1 ~ generated from the (k s) state 
by addition of extra matter. 
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(k  7) (k s ) AND (k 9) STATES 

Figure 11 Coincidence site lattice and sublattice associated 
with the grain boundary of Fig. 10b. 

pondence of Fig. 11 with that in Fig. 3 is 
immediately apparent. 

The uniformly bent (K 2) state can be generated 
from the (K 2) state via the following distortion 
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{~_+ R sin o/2 i) 7 cos 0/2 -R  +--; 

= t  sin2/2 cos0/20 

(67) 

where R is the radial distance to the neutral axis, 
while p is a radial distance measured with respect 
to this axis. The angle of rotation 0/2 is measured 
with respect to the vertical axis. We can next form 
the torn state from either the (~2) or (K 2) states. 
Choosing the latter, the distortion tensor can be 
written as 

K 2 1 K 2 1 Dk K~ = {D.s H(--x  )}. + {D,.,H(+x l}- (68) 
1 K K ~ 1 2 *~ K 2" 2 

where 

and 

,.s0j2.0/2 i) 
Dk K2 = l--sin 0/2 cos 0/2 (69a) 

0 0 

 cos0 2 i) 
= Isin~/2 cos 0/2 (69b) Dk~ 2 

0 

The above distortions are simply rigid rotations of 
Grains l and 2, while the Heaviside functions in 
Equation 68 are of the same form as those given 
by Equations 16. Dragged coordinates could also 
have been used to describe the (K 2) ~ (k s) trans- 
formation; however, in this case, Equation 68 
would have to be rewritten as 

= {ak H(-~:~)}, + {~ H(+~)}~. 
(70) 

It is next possible to generate the (k 6) state from 
(K z) by means of the following distortion 

k 6 AK 2 { k 6 1 k 6 1 = A.  ~H(--x )}1 + (A . .2H(+x)}~  
1 ix  K 2 ~ 2 ~ ~ K 2 

(71) 
where 

----- kS ( i --tan 0/2 
Alk; qK2/COS 0/2 = an /2 1 

0 

and 

0 

0 

1 

(72a) 



A~z~ = DK~/COS0/2 = ta 0/2 1 

0 

(72b) 

This particular deformation may be visualized as 
relating to a volume shear which produces the 
material that occupies the wedge 1 - 4 - 7 - 4 ' - 1  in 
Fig. 10b. 

The (k 9) state lattice can be viewed as being 
generated from the (K 2) state by means of the 
following distortion: 

A k  ~ _ 1 k9 
cos 0/2 6K~ (73a) 

or in terms of dragged coordinates 

AI~9~ = 5 ~ i .  (73b) 

The coincidence site lattice (k 7) can in turn be 
derived from the (k 9) state by means of the 
following coordinate transformation 

C~k9 = 6k~ (74) 

where M, along with another integer N, are defined 

a s  []1 

tan 0/2 = N/M. (75) 

In the case of Fig. 10b, N = 1 and M = 2. Since 
[1] 

aoc (76) 
ao~s - (N 2 + M  2) 

the (k 8) state may be related to the (k 7) state as 
follows 

Ckk~ = (N 2 + M  2) 6kST. (77) 

This (k 8) state representation of the grain boundary 
is shown in more detail in Fig. 12a. It also follows 
from inspection of Equations 73a and 71 that the 
(k 6 ) and (k 9) states represent the same distortions, 
but expressed in terms of different coordinate 
frames, i.e., they can be brought into correspon- 
dence with one another by rigid rotations of  0/2. 
Similar to Equation 71, the (K 2) state can be 
converted to the (k ~~ state coordinates shown in 
Fig. 12b by writing 

CkKlO k ] 0 1 k I o 1 
= + 

(78) 

a) 

7 
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Figure 12 Alternate representations of: (a) The (k 6) state 
of Fig. 10b; (b) The (K 2) state of Fig. 9a; (c) The (•2) 
state of Fig. 9b. 

where fk'2~ ~- NAIl62 (79a) 

and 
fKk'2 ~ NA ~:62. (79b) 

Finally, we can represent the uniformly bent (•2) 
state configuration in terms of the (k 11) state 
configuration illustrated in Fig. 12c by again 
employing a transformation of the type given by 
Equation 78. Here, however, AI~22 varies smoothly 
with 0. Thus, as in the case of the (t 0 and (K 1) 
states of Figs. 1 and 4 respectively, Fig. 12 also 
shows that any state, whether distorted or not, 
may be represented in terms of a dislocated, i.e., a 
non-Riemannian, state or in terms of a non- 
dislocated, i.e., Riemannian, state. This would at 
first appear to contradict the concept that plastic 
deformation is associated with dislocations. 
However, from what we have seen so far, in order 
for there to be plastic deformation, a true distortion 
must occur in which the metric is dragged along, 
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~ 6  

i.e., A~:~. The fact that a dislocated state can be 
generated from a non-dislocated state via a 
coordinate state transformation, i.e., C~' simply 
means that dislocations are not always associated 
with plastic deformation, but may also represent 
elastic distortions. 

6. Burgers circuit and associated tensor 
quantities associated with a symmetric 
tilt boundary 

The closure failure associated with the creation of 
the pair of free surfaces in Fig. 10a can be written 
as  

, f ~ k  s ' .  K 2 b ks = ~D/dKZ ClX (80) 

which in conjunction with Equations 68 and 69 
gives 

b 1 = {4ao sin 0/2}1 + {4ao sin 0/2}2 (81a) kS r 

and 
b 2 = {--4ao cos 0/2}1 + {4ao cos 0/2}2 
kS ' 

(81b) 

or in terms of Fig. 10a 

while 

b 1 = { A x  I } q- { A x 1 } 2  ( 8 2 a )  
kS' 4 -7 ~ 7'-4 

b 2 = {Ax2}, + {Axe} 2. (82b) 
kS' 7'-1 1-7  

The above two quantities are simply the compo- 
nents of the surface vectors 

b2ks = { 512}1 + {ax2 }21_4 (83) 

which can be obtained by substituting Equation 
70 into Equation 80. The fives are primed in 
Equations 80-82 to emphasize the multicom- 
ponent representation of the closure failures. The 
unprimed notation, on the other hand, represents 
a coordinate system which has been dragged [4] 
so that the coordinates of the initial and final 
states remain unchanged. 

For the dislocated (k e) state of Fig. 10b, we 
may write 

b k6 = - -  ~ A k ~  d x  K2 (84) 

which together with Equations 71 and 72 gives 

b I = {4 tan 0/2}, + {4 tan 0/2}2 (85a) 
k 6 

or in terms of Fig. 10b 

b 1 : { A x I } I  + { A X 1 } 2 .  (85b) 
k6 4'- 7 '7-4 
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If the (k 6) state were to be torn along the boundary 
1-7,  then Equation 84, without the minus sign, 
would yield 

b 2 = {--4} 1 + {4} 2 (86a) k 6 

or in terms of Fig. 10b 

b 2 = {AX2}l +{Ax=}2 = 0 (86b) 
k6 7-1 1 -7  

since these surfaces cancel with one another, i.e., 
are not free. Thus, only the net closure failure 
given by Equation 85a remains. This particular 
closure failure may be viewed as expressed in 
terms of local coordinates. On the other hand, if 
we write Equation 84 in terms of Equation 68 
then the closure failure is given by the vector 
4 ' - 4  in Fig. 10b and may be considered as 
expressed in terms of the original (K 2) state 
reference system. We have thus established a 
complete self-consistency between Equations 41a 
and 41b on the one hand, for two-phase interfaces, 
and Equations 84 and 80 on the other hand, for 
grain boundaries. 

The Burgers circuit in the (k 6) state can now be 
represented in the (k 8) state shown in Fig. 12a. 
This is simply a coordinate transformation given 
by 

( a o c s  t 
C~8 - DkK' \sin O/2J (87) 

where the term in parentheses follows from the 
fact that 

sin 0/2 = aoeJao. (88) 

We can thus write 

b k8 = Ckk6 s b k6 (89) 

which in view of Equation 85a gives 

and 

b 1 k8 = {4}, + {4}2 = &X 1 (90a) 
4 ' -4  

b 2 = {2}, + {--2}2 = 0. (90b) 
k 8 

These closure failures are clearly shown by the 
dotted arrows in Fig. 12a. The closure failures 
given by Equation 90a bear a close resemblance to 
those given for the (k s) state by Equation 82a. In 
both cases, they may be viewed as the vector sum 
of the Burgers vectors associated with the crystal 
lattice dislocations (CLD) of Fig. 10b. This vector 
sum may in turn be associated with a so-called 
grain boundary dislocation (GBD) [1]. In a similar 



manner, the Burgers circuit of Fig. 9a may be 
redrawn in terms of the (k 1~ state coordinate 
system shown in Fig. 12b. In this case, we may 
write 

o f klO b k' = -- ~0 C ~  dx K2 (91) 

k 1o 
where CK~ is given by Equation 78. The closure 
failure associated with Equation 91 is shown by 
the eight dotted vectors between 2 - 6  in Fig. 12b. 
It is obvious from what has been said in connection 
with Equation 31 that a change in coordinate 
system cannot have associated with it a strain 
tensor. On the other hand, the (k 1~ state can be 
generated from the (k 8) state by means of the 
following distortion 

{ A  k 1 nt_ a H(~- 

where (92) 
A~: ~ A~62 (93a) 

and 
Ak: ~ AkK62 (93b) 

as given by Equations 72. Using the small reference 
circuit 8 - 9 - 1 0 - 1 1 - 1 2 - 1 3  8 in Fig. 12a, we 
may write, similar to Equation 84 

o (~ klO k s 
b k' = -- Ak8 (iX (94) 

which gives 

b 1 = {--4 tan 0/2}1 + {--4 tan 0/2}2 (95a) 
k lo 

and 
b 2 k, o = {4}1 + {--4}2 (95b) 

which in terms of the smaller Burgers cirucit in 
Fig. 12b can be written as 

b 1 = { A x l } I  q - { m x l } ~  (96a) 
k l ~  1 4 - 8 '  - 8-14 

and 
b z = {~x2}1 + {Ax2}~. (96b) 
k I o 

8 -11 11 -8  - 

These relations are similar in form to those given 
b y  Equations 85 and 86. This is to be expected 
since the deformation which generates state (k 6) 
from (K 2) is just the inverse of  that which 
generates state (k 1~ from (kS). It is apparent that 
in both these cases a plastic strain is associated 
with the deformation. In particular, in the former 
case 

k 6 16 
eKZL  2 : 1 ( g k 6 1 6 A K 2 A L 2  _ _ g K Z L 2  ) (97) 

where gK~L 2 = 6K2L~. The above relation 
combined with Equations 72 yields 

e K 2 L 2  : 

(Xtan20j  0 
0 �89 tan 2 0/2 . 

0 0 

(983 

The e =  component  in the above tensor measures 
the plastic strain associated with the increase in 
length of the line element 1 - 4  in Fig. 9a to 1 - 7  
in Fig. 10b, and has been discussed in detail else- 
where [15]. It is also apparent that Equation 97 
also gives the same plastic strain for the (k 8) 
(k 1~ state transformation. 

Once again, it should be emphasized that the 
coincidence site lattice or sublattice corresponds 
to a coordinate system which enables the dislo- 
cation content, described in terms of the original 
system, to be eliminated. It is assumed, however, 
that the boundary is perfect. If, on the other hand, 
the boundary is imperfect, say as would occur by 
the removal of  some of the dislocations, we obtain 
the configuration shown in Fig. 13a. The corres- 
ponding representation in terms of the coincidence 
site lattice and sublattice is shown in Fig. 13b [ 16]. 
In terms of the former notation, it can be inferred 
that five dislocations are missing within the circum- 
scribed Burgers circuit, which would otherwise 
make the boundary perfect. In terms of the 
coincidence site lattice of Fig. 13b, the Burgers 
circuit shows that there is an excess of ten 
dislocations which keeps the crystal from being 
perfect. Although both dislocation representations 
in Fig. 13 are correct, the one shown in Fig. 13b 
has a distinct advantage over the other in that it 
can be represented in terms of a finite rather small 
number of  dislocations. It is in fact this represen- 
tation which is most closely related to the so- 
called grain boundary dislocations observed within 
the electron microscope [ 17]. 

As was the case for the two-phase interface, 
Equation 68 can be converted to a surface integral 
via Stokes' theorem to give 

g'  k 6 K 2 f b k6 ~ b A K 2 d X  = - -  ds  k6 = - -  0 [ L 2 A K 2 ]  d E  L 2 K 2  
o 

(99) 

For the specific component  b I the above 
k 6 ' 

equation yields 

k 6bl = - - f s  31AldF12 (100a) 

which with Equation 71 gives 
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(a) 

(b) 

Figure 13 (a) Dislocation deficient tilt boundary of mis- 
orientation 0 = 53.1 ~ represented in terms of the original 
crystal lattices. (b) Same boundary as that shown in (a) 
but represented in terms of the coincidence site sublattice. 

b' = tan O/2 8(x'2) dx' dx a 
k6 - ~  1 

+{f_+tanO/26(xt~)dx' fdx2}2. 

(100b) 

When integrated, the above equation reduces to 
the same relation as that given by Equation 85a. 
Equation 99 can also be written as 

1" k 6 m616 b k6 = - -  jff,ho> ~ (101) 

where 
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k 6 1 L 2 2 k6  k6  
S• = ~Am~ DL~AK~ --OK~AW] 

(lO2) 

or more specifically 

Si�89 �89 t 2 2 1 = [AIA2--A1A2] 3aA~ (103a) 
k 6 

which can be expanded to give 

Si i '  = {-- �89 tan 0/2 ~ (x 1)}1 + {--21 tan 0/2 6 (xJ)} 2 
k 6 

(103b) 

which when substituted into Equation 101 gives 
the same relation as that given by Equation 85a, 
again establishing the complete self-consistency 
between all of these methods. It can also be 
shown, similar to Equation 57b, that 

bk5 ~s k s  = ~'~mSl s d E  m s l s  (104) 

where 
k s k 6 

g2mq~ = S~n6i 6 . (105) 

The anholonomic object may be thought of as 
associated with the free surfaces in Fig. 10a, while 
the torsion tensor is a measrue of the dislocation 
content as illustrated in Fig. 10b. Similar expres- 
sions can be obtained for the coincidence site 
lattice representations of  Fig. 12. In addition, the 
dislocated grain boundary states can be torn so as 
to generate a condition given by Equation 64. 

7. Some further considerations associated 
with internal interfaces 

The torsion tensor and anholonomic object can be 
utilized to determine either the dislocation 
densities or density of newly created free surfaces 
by means of the following relations [5, 14, 15] 

O~ n k  = - - 5  n l m  S i r h  k (106a) 
and 

O~ n k  = e n l m ~ l k  m (106b) 

where e ram is the permutation tensor defined by 

e n lm = enlrn/x/g (107) 

where e rnm is the permutation symbol and g is the 
determinant of the metric tensor. In the case of 
Fig. 10b, Equation 106a gives 

~31 = {tan 0/2 6 (XJ)}l -]- {tan 0/2 3 (X~)}2 

(108a) 

which in terms of Fig. 10b is simply 



0~31 ~ 4'-___7_ 7 - 4  
k 6 A X  2 Jr- --Z~X1 . (108b) 

1 - 4 '  11 \ 1 - 4  ; 2  

In a similar manner, Equation 106b gives 

e32 = {--~5(x')},  + {8(x's)} 2 (109) 
k s k 

where c~ 32 may be thought of  as a measure of the 
k s 

newly created free surface density in Fig. 10a. 
A final item of interest, and one which seems to 

have not been given much attention in the past, 
corresponds to what may be termed a law of 
conservation of  the Burgers vector. This states that 
the sum of the Burgers vectors in a given manifold 
must always equal zero. This is also equivalent to 
saying that dislocations should always be created 
in pairs of  opposite sign. Fig. 4 would at first seem 
to contradict this law since all of  the dislocations 
shown therein are of  the same sign. However, this 
particular picture is incomplete since surface dislo- 
cations must be added to eliminate the surface 
tractions [9, 18], resulting from the internal dislo- 
cations. These surface dislocations may be more 
easily seen by considering the finite body of  Fig. 4 
imbedded in an infinite medium such as shown in 
Fig. 14. The overall distortion may then be 
described by a single vertical set of dislocations as 
well as two sets of horizontal dislocations. The 
horizontal dislocations may be viewed as the 
surface dislocations since they define a surface 
along which the surface tractions vanish. The 
infinite body can thus be cut along these surfaces 
to generate the (• 1) state of  Fig. 4. Note now that 
when a Burgers circuit is taken along this entire 
array, as shown in Fig. 14, the positive and 
negative closure failures add up to zero, in 
accordance wtih the previously stated law. The 
surface dislocations may also be viewed as those 
providing the image forces to the free surfaces. 
This is a very powerful concept and has been used 
to solve a number of crack problems [18].  No 
image dislocations are present for the (k) state of  
Fig. 2, since they may be viewed as having moved 
from the surface to the interface to completely 
annul the stress fields of the virtual dislocations 
shown dotted. This will always manifest itself 
when a coincidence site lattice can be constructed, 
i.e., the transformation from state (k) to (k 2) or 
from (k s) to (kS). 

! 

Figure 14 Modification of Fig. 4 in which extra material 
has been added to the top and bottom faces. 

8. Summary and conclusions 
Simple two-phase interfaces and tilt-type grain 
boundaries have been analysed in terms of  their 
coincidence site lattices. It is shown that these 
particular lattices provide a new reference whereby 
an elastic distortion or else a perfect lattice may be 
described in terms of dislocations. On the other 
hand, the coincidence site lattice can be used to 
represent an originally dislocated space as dislo- 
cation free. The various tensor quantities, such as 
distortion, metric, strain, torsion, etc., have all 
been defined and analysed with respect to both 
the original crystal lattice as well as the corres- 
ponding coincidence site lattice. It is shown that 
the flexibility involved in transforming from a 
dislocated to a non-dislocated state and vice versa 
provides a powerful method for solving various 
problems in continuum mechanics. 

Acknowledgements 
The author would like to express his appreciation 
to Dr R. deWit of  the Metallurgy Division and 
Institute for Materials Research of The National 
Bureau of  Standards, Washington, DC as well as to 
Dr K. Jagannadham of the Engineering Materials 

219 



G r o u p  and  D e p a r t m e n t  o f  Mechanica l  Engineer ing  

o f  the  Univers i ty  of  Mary land  for  a n u m b e r  o f  

en l igh ten ing  discussions.  F inanc ia l  s uppo r t  for  

the  p resen t  s t udy  was p rov ided  by  the  Na t iona l  

Science F o u n d a t i o n  unde r  G r a n t  no.  DMR- 

7202944 .  

References 
1. M. J. MARCINKOWSKI and K. SADANANDA, 

Acta  Crystall. A31 (1975) 280. 
2. M. J. MARCINKOWSKI, K. SADANANDA and 

W. H. CULLEN, Jr., ibid. A31 (1975) 292. 
3. M. J. MARCINKOWSKI, "Fundamental Aspects of 

Dislocation Theory," Vol. 1, edited by J.A. Simmons, 
R. deWit and R. Bullough, (NBS Special Publication 
no. 317, 1970) p. 531. 

4. J.A. SCHOUTEN,"Ricci-Calculus" (Springer-Verlag, 
Berlin, 1954). 

5. E. KR(~NER, "Kontinuumstheorie Der Versetzungen 
Und Eigenspannungen" (Springer-Verlag, Berlin, 
1958). 

6. Y. C. FUNG, "Foundations of Solid Mechanics" 
(Prentice Hall, Inc., New Jersey, 1965). 

7. K. H. ANTHONY, "Fundamental Aspects of Dislo- 
cation Theory," NBS Vol. 1, edited by J.A. Simmons, 
R. deWit and R. Bullough, (Special Publication No. 
317, 1970) p. 637. 

8. K. JAGANNADHAM and M. J. MARCINKOWSKI, 
J. Appl.  Phys., 48 (1977) 3788. 

9. K. JAGANNADHAM and M. J. MARCINKOWSKI, 
Phys. Stat. Sol. (a) 50 (1978). 

10. E. KR()NER, Arch. Rat. Mech. Anal. 4 (1959) 273. 
11. J.P. HIRTH and J. LOTHE, "Theory of Dislocations" 

(McGraw-Hill, New York, 1968). 
12. J. A. SCHOUTEN, "Tensor Analysis for Physicists" 

(Clarendon Press, London, 1951). 
13. K. KONDO, "Memoirs of the Unifying Study of the 

Basic Problems in Engineering Sciences by Means of 
Geometry" (Gakujutsu Bunken Fukyu-kai, Tokyo, 
1955) p. 458. 

14. M. ZORAWSKI, "Th6orie Math6matique des 
Dislocations," (Dunod, Paris, 1967). 

15. M.J.  MARCINKOWSKI, Phys. Stat. Sol. a38 (1976) 
223. 

16. M. J. MARCINKOWSKI and K. SADANANDA, ibid. 
a18 (1973) 361. 

17. W. F. TSENG, M. J. MARCINKOWSKI, and E. S. 
DWARAKADASA, J. Mater. Sci. 9 (1974) 41 

18. M. J. MARCINKOWSKI and E. S. P. DAS, Int. J. 
Fracture 10 (1974) 181. 

Received 22 May and accepted 26 May 1978. 

220 


